Tail asymptotics for the supercritical Galton – Watson process in the heavy - tailed case 1

نویسندگان

  • Denis Denisov
  • Dmitry Korshunov
  • Vitali Wachtel
چکیده

As well known, for a supercritical Galton–Watson process Zn whose offspring distribution has mean m > 1, the ratio Wn := Zn/m n has a.s. limit, say W . We study tail behaviour of the distributions of Wn and W in the case where Z1 has heavy-tailed distribution, that is, EeλZ1 = ∞ for every λ > 0. We show how different types of distributions of Z1 lead to different asymptotic behaviour of the tail of Wn and W . We describe the most likely way how large values of the process occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for the Number of Descendants in the Supercritical Galton–Watson Process: Heavy-Tailed Case

Asymptotics for the number of descendants in the supercritical Galton–Watson process: heavy-tailed case Abstract As well known, for a supercritical Galton–Watson process Z n whose offspring distribution has mean m > 1, the ratio W n := Z n /m n has a.s. limit, say W. We study tail behaviour of the distributions of W n and W in the case where Z 1 has heavy-tailed distribution, that is, Ee λZ1 = ...

متن کامل

A Branching-selection process related to censored Galton-Walton processes

We obtain the asymptotics for the speed of a particular case of a particle system with branching and selection introduced by Bérard and Gouéré (2010). The proof is based on a connection with a supercritical Galton-Watson process censored at a certain level. Résumé Nous étudions un cas particulier de système de particules avec branchement et sélection introduit par Bérard et Gouéré (2010). Nous ...

متن کامل

Asymptotics for the maximum of a modulated random walk with heavy-tailed increments

We consider asymptotics for the maximum of a modulated random walk whose increments ξXn n are heavy-tailed. Of particular interest is the case where the modulating process X is regenerative. Here we study also the maximum of the recursion given by W0 = 0 and, for n ≥ 1, Wn = max(0, Wn−1 + ξXn n ).

متن کامل

Two-node fluid network with a heavy-tailed random input: the strong stability case

We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional queue-length process. The tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, p...

متن کامل

Asymptotics for Random Walks with Dependent Heavy-tailed Increments

Abstract: We consider a random walk {Sn} with dependent heavy-tailed increments and negative drift. We study the asymptotics for the tail probability P{supn Sn > x} as x→∞. If the increments of {Sn} are independent then the exact asymptotic behavior of P{supn Sn > x} is well known. We investigate the case in which the increments are given as a one-sided asymptotically stationary linear process....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013